
Journal of Mathematical Imaging and Vision (2023) 65:164–184
https://doi.org/10.1007/s10851-022-01132-9

Learning Linearized Assignment Flows for Image Labeling

Alexander Zeilmann1 · Stefania Petra2 · Christoph Schnörr1

Received: 1 August 2021 / Accepted: 12 May 2022 / Published online: 17 January 2023
© The Author(s) 2023

Abstract
We introduce a novel algorithm for estimating optimal parameters of linearized assignment flows for image labeling. An
exact formula is derived for the parameter gradient of any loss function that is constrained by the linear system of ODEs
determining the linearized assignment flow. We show how to efficiently evaluate this formula using a Krylov subspace and
a low-rank approximation. This enables us to perform parameter learning by Riemannian gradient descent in the parameter
space, without the need to backpropagate errors or to solve an adjoint equation. Experiments demonstrate that our method
performs as good as highly-tuned machine learning software using automatic differentiation. Unlike methods employing
automatic differentiation, our approach yields a low-dimensional representation of internal parameters and their dynamics
which helps to understand how assignment flows and more generally neural networks work and perform.

Keywords Assignment flows · Image labeling · Parameter learning · Exponential integration · Low-rank approximation

Mathematics Subject Classification 34C40 · 62H35 · 68U10 · 68T05 · 91A22

Contents

1 Introduction . 164
1.1 Overview, Motivation 164
1.2 Related Work . 165
1.3 Contribution, Organization 166

2 Preliminaries . 166
2.1 Basic Notation . 166
2.2 Assignment Flow . 167
2.3 Linearized Assignment Flow 168
2.4 Exponential Integration 168

3 Parameter Estimation . 169
3.1 Learning Procedure . 169
3.2 Loss Function Gradient 170

3.2.1 Matrix Differentials 170
3.2.2 Closed-Form Gradient Expression 170

3.3 Gradient Approximation 173
3.3.1 Motivation . 173
3.3.2 An Approximation by Benzi and Simoncini 173

B Alexander Zeilmann
alexander.zeilmann@iwr.uni-heidelberg.de
https://ipa.math.uni-heidelberg.de

Stefania Petra
https://www.stpetra.com

1 Image and Pattern Analysis Group, Heidelberg University,
Heidelberg, Germany

2 Mathematical Imaging Group, Heidelberg University,
Heidelberg, Germany

3.3.3 Low-Rank Approximation 174
3.4 Computing the Gradient Using Automatic Differentiation 175

4 Experiments . 175
4.1 Data Generation . 176
4.2 Experimental Setup . 176
4.3 Properties of the Gradient Approximation 176
4.4 Parameter Prediction 178

5 Conclusion and Further Work 181
5.1 Conclusion . 181
5.2 Future Work . 181

Appendix A. Proofs . 181
A.1. Proofs of Sect. 3.2.2 . 181

References . 183

1 Introduction

1.1 Overview, Motivation

Learning the parameters of large neural networks from train-
ing data constitutes a basic problem in imaging science,
machine learning and other fields. The prevailing approach
utilizes gradient descent or approximations thereof based
on automatic differentiation [5] and corresponding software
tools, like PyTorch [19] and TensorFlow [1]. This kind
of software support has been spurring research in imag-
ing science and machine learning dramatically. However,
merely relying on numerical schemes and their automatic

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10851-022-01132-9&domain=pdf
http://orcid.org/0000-0002-8119-0349
http://orcid.org/0000-0002-7189-2275
http://orcid.org/0000-0002-8999-2338

Journal of Mathematical Imaging and Vision (2023) 65:164–184 165

differentiation tends to thwart attempts to shed light on the
often-criticized black-box behavior of deep networks and to
better understand the internal representation and function of
parameters and their adaptive dynamics.

In this paper, we explore a different route. Adopting the
linearized assignment flow approach introduced by [27], we
focus on a corresponding large system of linear ODEs of the
form

V̇ = A(�)V + B, (1.1)

and study a geometric approach to learning the regulariza-
tion parameters � by Riemannian gradient descent of a loss
function

� �→ L(V (T ;�)) (1.2)

constrained by the dynamical system (1.1). Here, we exploit
the crucial property that the solution to (1.1) can be specified
in closed form (2.24) and can be computed efficiently using
exponential integration ([27] and Sect. 2.4). Matrix V ∈
R

|I |×c represents a tangent vector of the so-called assignment
manifold, |I | is the number of nodes i ∈ I of the underlying
graph, and c is the number of labels (classes) that have to be
assigned to data observed at nodes i ∈ I . Specifically,

• we derive a formula—see Theorem 3.8—for the Euclidean
parameter gradient ∂�L(V (T ;�)) in closed form;

• we show that a low-rank representation of this gradi-
ent can be used to efficiently and accurately approximate
this closed-form gradient; neither backpropagation, nor
automatic differentiation or solving adjoint equations are
required;

• we highlight that the resulting parameter estimation algo-
rithm, in terms of a Riemannian gradient descent iteration
(3.7) on the parameter manifold, can be implemented
without any specialized software support with modest
computational resources;

The significance of our work reported in this paper arises in
a broader context. The linearized assignment flow approach
also comprises the equation

W (T) = Exp1W (V (T)) (1.3)

that yields the labeling in terms of almost integral assignment
vectorsWi ∈ R

c+, i ∈ I that form the rows of the matrixW ,
depending on the solution V (t) of (1.1) for a sufficiently large
time t = T . Both Eqs. (1.3) and (1.1) together constitute a
linearization of the full nonlinear assignment flow [3]

Ẇ = RW S(W) (1.4)

at the barycenter 1W of the assignment manifold. Choosing
an arbitrary sequence of time intervals (step sizes) h1, h2, . . .
and setting

W (0) = 1W , W (k) = W (hk), k ∈ N, (1.5)

a sequence of linearized assignment flows

W (k+1) = Exp1W (V (k)), (1.6a)

V (k+1) = V (k) + V
(
hk;�(k),W (k)), k = 0, 1, 2, . . .

(1.6b)

can be computed in order to approximate (1.4) more closely,
where V

(
hk;�,W (k)

)
solves the corresponding updated

ODE (1.1) of the form

V̇ = A(�(k);W (k))V + �0S(W (k)). (1.6c)

The time-discrete equations (1.6) reveal twobasic ingredients
of deep networks (or neural ODEs)which the full assignment
flow (1.4) embodies in a continuous-time manner: coupling
a pointwise nonlinearity (1.6a) and diffusion (1.6b), (1.6c)
enhances the expressivity of network models for data analy-
sis.

The key point motivating the work reported in this paper
is that our results apply to learning the parameters�k in each
step of the iterative scheme (1.6).We expect that the gradient,
and its low-dimensional subspace representations, will help
the further study of how each ingredient of (1.6) impacts the
predictive power of assignment flows. Furthermore, ‘deep’
extensions of (1.4) and (1.6) are equally feasible within the
same mathematical framework (cf. Sect. 5.2).

1.2 RelatedWork

Assignment flows were introduced by [3]. For a survey of
prior and recent related work, we refer to [23]. Linearized
assignment flows were introduced by [27] as part of a com-
prehensive study of numerical schemes for the geometric
integration of the assignment flow equation (1.4).

While the bulk of these schemes are based on a Lie group
action (cf. [14]) on the assignment manifold, which enables
to apply established theory and algorithms for the numeri-
cal integration of ODEs that evolve in an Euclidean space
[11], the linearity of the ODE (1.1) specifically allows to
represent its solution in closed form by the Duhamel (or
variation-of-constants) formula [24]. Corresponding exten-
sions to nonlinear ODEs rely on exponential integration
[12,13]. Iteration (1.6) combines a corresponding iterative
scheme and the tangent-space based parametrization (1.3) of
the linearized assignment flow.

A key computational step of the latter class of methods
requires to evaluate an analyticalmatrix-valued function, like

123

166 Journal of Mathematical Imaging and Vision (2023) 65:164–184

the matrix exponential and similar functions [8, Section 10].
While basic methods [17] only work for problem of small
andmedium size, dedicatedmethods usingKrylov subspaces
[2,10] and established numerical linear algebra [20,21] can
be applied to larger problems. The algorithm that results from
our approach employs such methods.

Machine learning requires to compute gradients of loss
functions that take solutions of ODEs as argument. This
defines an enormous computational task and explains why
automatic differentiation and corresponding software tools
are almost exclusively applied. Alternative dedicated recent
methods like [16] focus on a special problem structure,
viz. the action of the differential of the matrix exponen-
tial on a rank-one matrix. Our closed-form formula for the
parameter gradient also involves the differential of a matrix
exponential. Yet, wewish to evaluate the gradient itself rather
than its action on another matrix. The special problem struc-
ture that we can exploit is the Kronecker sum of matrices.
Accordingly, our approach is based on the recent corre-
sponding work [6] and an additional subsequent low-rank
approximation.

1.3 Contribution, Organization

We derive a closed-form expression of the gradient of anyC1

loss function of the form (1.2) that depends on the solution
V (t) of the linear system of ODEs (1.1) at some arbitrary
but fixed time t = T . In addition, we develop a numerical
method that enables to evaluate the gradient efficiently for the
common large sizes of image labeling problems. We apply
the method to optimal parameter estimation by Rieman-
nian gradient descent and validate our approach by a series
of proof-of-concept experiments. This includes a compari-
son with automatic differentiation applied to two numerical
schemes for integrating the linearized assignment flow: geo-
metric explicit Euler and exponential integration. It turns out
that our method is as accurate and efficient as the highly opti-
mized automatic differentiation software, like PyTorch [19]
and TensorFlow [1]. We point out that to our knowledge,
automatic differentiation has not been applied to exponential
integration, so far.

This paper extends the conference paper [26] in that all
parameter dependencies of the loss function, constrained
by the linearized assignment flow, are taken into account
(cf. diagram (3.15)). In addition, a complete proof of the cor-
respondingmain result (Theorem 3.8) is provided. The space
complexity of various gradient approximations are specified
in a series of Remarks. The approach is validated numeri-
cally and more comprehensively by comparing to automatic
differentiation and by examining the influence of all param-
eters.

The plan for this paper is as follows. Section2 summarizes
the assignment flow approach, the linearized assignment

flow and exponential integration for integrating the latter
flow. Section3 details the derivation of the exact gradi-
ent of any loss function of the flow with respect to the
weight parameters that regularize the flow. Furthermore, a
low-rank approximation of the gradient is developed for eval-
uating the gradient efficiently. We also sketch how automatic
derivation is applied to two numerical schemes in order to
solve the parameter estimation problem in alternative ways.
Numerical experiments are reported in Sect. 4 for comparing
the methods and for inspecting quantitatively the gradient
approximation andproperties of the estimatedweight patches
that parametrize the linearized assignment flow.We conclude
in Sect. 5 and point out further directions of research.

2 Preliminaries

2.1 Basic Notation

We set [n] = {1, 2, . . . , n} for n ∈ N. The cardinality of a
finite set S is denoted by |S|, e.g., |[n]| = n. Rn+ denotes
the positive orthant and R

n
> its interior. 1 = (1, 1, . . . , 1)�

has dimension depending on the context that we specify
sometimes by a subscript, e.g., 1n ∈ R

n . Similarly, we set
0n = (0, 0, . . . , 0)� ∈ R

n . {ei : i ∈ [n]} is the canonical
basis of R

n and In = (e1, . . . , en) ∈ R
n×n the identity

matrix.
The support of a vector x ∈ R

n is denoted by supp(x) =
{i ∈ [n] : xi �= 0}. �n = {p ∈ R

n+ : 〈1n, p〉 = 1} is the
probability simplex whose points represent discrete distri-
butions on [n]. Distributions with full support [n] form the
relative interior �̊n = �n ∩R

n
>. 〈·, ·〉 is the Euclidean inner

product of vectors and matrices. In the latter case, this reads
〈A, B〉 = tr(A�B) with the trace tr(A) = ∑

i Aii . The
induced Frobenius norm is denoted by ‖A‖ = √〈A, A〉, and
other matrix norms like the spectral norm ‖A‖2 are indicated
by subscripts. The mapping Diag : Rn → R

n×n sends a vec-
tor x to the diagonal matrix Diag(x) with entries x . A ⊗ B
denotes the Kronecker product of matrices A and B [7,25]
and ⊕ the Kronecker sum

A ⊕ B = A ⊗ In + Im ⊗ B ∈ R
mn×mn,

A ∈ R
m×m, B ∈ R

n×n . (2.1)

We have

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) (2.2)

for matrices of compatible dimensions. The operator vecr
turns a matrix into the vector by stacking the row vectors. It
satisfies

vecr (ABC) = (A ⊗ C�) vecr (B). (2.3)

123

Journal of Mathematical Imaging and Vision (2023) 65:164–184 167

The Kronecker product v ⊗w ∈ R
mn of two vectors v ∈ R

m

andw ∈ R
n is definedbyviewing the vectors asmatriceswith

only one column and applying the definition of Kronecker
products for matrices. We have

v ⊗ w = vecr (vw�). (2.4)

The matrix exponential of a square matrix A is given by [8,
Ch. 10]

expm(A) =
∑

k≥0

Ak

k! . (2.5)

L(E1, E2) denotes the space of all linear bounded mappings
from E1 to E2.

2.2 Assignment Flow

Let G = (I , E) be a given undirected graph with vertices
i ∈ I indexing data

FI = { fi : i ∈ I } ⊂ F (2.6)

given in ametric space (F , d). In this paper, we focus primar-
ily on the application of image labeling in which the graph G
is a grid graph equipped with a 3× 3 or larger neighborhood
Ni = {k ∈ I : ik = ki ∈ E} ∪ {i} at each pixel i ∈ I .
The linearized assignment flow and the learning approach in
this paper can, however, also be applied to the case of data
labeling on arbitrary graphs.

Along with FI , prototypical data (labels) LJ = {l j ∈
F : j ∈ J } are given that represent classes j = 1, . . . , |J |.
Supervised image labeling denotes the task to assign pre-
cisely one prototype l j to each datum fi at every vertex i in
a coherent way, depending on the label assignments in the
neighborhoods Ni . These assignments at i are represented
by probability vectors

Wi ∈ �̊|J |, i ∈ I . (2.7)

The set �̊|J | becomes a Riemannian manifold denoted by
S := (�̊|J |, gFR)when endowed with the Fisher–Rao metric
gFR . Collecting all assignment vectors as rows defines the
strictly positive row-stochastic assignment matrix

W = (W1, . . . ,W|I |)� ∈ W = S × · · · × S ⊂ R
|I |×|J |,

(2.8)

that we regard as point on the product assignment manifold
W . Image labeling is accomplished by geometrically inte-
grating the assignment flow W (t) solving

Ẇ = RW
(
S(W)

)
,

W (0) = 1W := 1

|J |1|I |1�|J | (barycenter), (2.9)

where RW and S(W) are defined in (2.11b) resp. (2.17). The
assignment flow provably converges toward a binary matrix
[28], i.e., limt→∞ Wi (t) = e j(i), for every i ∈ I and some
j(i) ∈ J , which yields the label assignment fi �→ l j(i). In
practice, geometric integration is terminated whenW (t) is ε-
close to an integral point using the entropy criterion from [3],
followed by trivial rounding, due to the existence of basins
of attraction around each integral point [28].

We specify the right-hand side of the differential equation
in (2.9)—see (2.14) and (2.17) below—and refer to [3,23]
for more details and the background. With the tangent space

T0 = TpS = {v ∈ R
|J | : 〈1, v〉 = 0}, ∀p ∈ S, (2.10)

that does not depend on the base point p ∈ S, we define
�0 : R|J | → T0, z �→ I|J | − 1

|J |1|J |1�|J |, (2.11a)

Rp : R|J | → T0, z �→ Rp(z) = (
Diag(p) − pp�)

z, (2.11b)

Exp : S × T0 → S, (p, v) �→ Expp(v) = e
v
p

〈p, e v
p 〉

p, (2.11c)

Exp−1 : S × S → T0, (p, q) �→ Exp−1
p (q) = Rp log

q

p
, (2.11d)

exp : S × R
|J | → S, (p, z) �→ expp(z) = Expp ◦Rp(z) = pez

〈p, ez〉 , (2.11e)

where multiplication, division, exponentiation e(·) and log(·)
apply component-wise to vectors. Corresponding maps

RW , ExpW , expW (2.12)

in connection with the product manifold (2.8) are defined
analogously, and likewise the tangent space

T0 = T0 × · · · × T0 = TWW, ∀W ∈ W (2.13)

and the extension of the orthogonal projection (2.11a) onto
T0, again denoted by �0. For example, regarding (2.9), with
W ∈ W and S(W) ∈ W (or more generally S ∈ R

|I |×|J |),
we have

RW S(W) = (
RW1 S1(W), . . . , RW|I | S|I |(W)

)�

= vec−1
r

(
Diag(RW) vecr

(
S(W)

))
(2.14a)

with

Diag(RW) :=

⎛

⎜⎜⎜⎜
⎝

RW1 0 · · · 0

0 RW2

...
...

. . . 0
0 · · · RW|I |

⎞

⎟⎟⎟⎟
⎠

. (2.14b)

Given data FI are taken into account as distance vectors

Di = (
d(fi , l1), . . . , d(fi , l|J |)

)�
, i ∈ I (2.15)

123

168 Journal of Mathematical Imaging and Vision (2023) 65:164–184

and mapped toW by

L(W) = expW (− 1
ρ
D) ∈ W,

Li (Wi) = expWi
(− 1

ρ
Di)

= Wie
− 1

ρ
Di

〈Wi , e
− 1

ρ
Di 〉

, (2.16)

where ρ > 0 is a user parameter for normalizing the scale
of the data. These likelihood vectors represent data terms in
conventional variational approaches: Each individual flow
Ẇi = RWi Li (Wi), Wi (0) = 1S converges to e j(i) with
j(i) = argmin j∈J Di j and in this sense maximizes the local
data likelihood.

The vector field defining the assignment flow (2.9) arises
through coupling flows for individual pixels through geo-
metric averaging within the neighborhoods Ni , i ∈ I ,
conforming to the underlying Fisher–Rao geometry

S(W) =

⎛

⎜⎜
⎝

...

Si (W)�
...

⎞

⎟⎟
⎠ = G�

(
L(W)

) ∈ W, (2.17a)

Si (W) = G�
i

(
L(W)

)

= ExpWi

⎛

⎝
∑

k∈Ni

ωik Exp
−1
Wi

(
Lk(Wk)

)
⎞

⎠ , i ∈ I .

(2.17b)

The similarity vectors Si (W) are parametrized by strictly
positive weight patches (ωik)k∈Ni , centered at i ∈ I and
indexed by local neighborhoods Ni ⊂ I , that in turn define
the weight parameter matrix

� = (�i)i∈I ∈ R
|I |×|I |
+ ,

�i |Ni = (ωik)k∈Ni
∈ �̊|Ni |,∑

k∈Ni

ωik = 1, ∀i ∈ I . (2.18)

The matrix � comprises all regularization parameters sat-
isfying the latter linear constraints. Flattening these weight
patches defines row vectors �i |Ni , i ∈ I and, by comple-
menting with 0, entries of the sparse row vectors �i of the
matrix �. Note that the positivity assumption ωik > 0 is
reflected by the membership �i |Ni ∈ �̊|Ni |. Throughout
this paper, we assume that all pixels have neighborhoods of
equal size

|N | := |Ni |, ∀i ∈ I (2.19)

and therefore simplywrite�i |N = �i |Ni . These parameters
are used in the linearized assignment flow, to be intro-

ducednext.Weexplain a correspondingparameter estimation
approach in Sect. 3 and a parameter predictor in Sect. 4.4.

2.3 Linearized Assignment Flow

The linearized assignment flow, introduced by [27], approx-
imates (2.9) by

Ẇ = RW

(
S(W0) + dSW0 RW0 log

W

W0

)
,W (0) = W0 ∈ W

(2.20)

around any point W0. In what follows, we only consider the
barycenter

W0 = 1W (2.21)

which is the initial point of (2.9). The differential equa-
tion (2.20) is still nonlinear but can be parametrized by a
linear ODE on the tangent space

W (t) = ExpW0

(
V (t)

)
, (2.22a)

V̇ = RW0

(
S(W0) + dSW0V

) =: BW0 + A(�)V ,

V (0) = 0, (2.22b)

where matrix A(�) linearly depends on the parameters �
of (2.17). The action of A(�) on V is explicitly given by
[27, Prop. 4.4]

A(�)V = −RW0dSW0V = RS(W0)�V

= − vec−1
r

(
Diag(RS(W0)) vecr (�V)

)
(2.23a)

=
⎛

⎝RS1(W0)

∑

k∈N1

ω1kVk , . . . , RS|I |(W0)

∑

k∈N|I |
ω|I |kVk

⎞

⎠

�
,

(2.23b)

where Diag(RS(W0)) is defined by (2.14b) and we took into
account (2.21). The linear ODE (2.22b) admits a closed-
form solution which in turn enables a different numerical
approach (Sect. 2.4) and a novel approach to parameter learn-
ing (Sect. 3).

2.4 Exponential Integration

The solution to (2.22b) is given by a high-dimensional inte-
gral (Duhamel’s formula)whose value in closed form is given
by

V (t;�) = tϕ
(
t A(�)

)
BW0 , ϕ(x) = ex − 1

x
=

∞∑

k=0

xk

(k + 1)! ,

(2.24)

123

Journal of Mathematical Imaging and Vision (2023) 65:164–184 169

where the entire function ϕ is extended to matrix arguments
as the limit of an absolutely convergent power series in the
matrix space [9, Theorem 6.2.8]. As the matrix A is already
very large even for medium-sized images, however, it is not
feasible in practice to compute ϕ(t A) in this way. Expo-
nential integration [10,18], therefore, was used by [27] for
approximately evaluating (2.24), as sketched next.

Applying the row-stacking operator (2.3) to both sides
of (2.22b) and (2.24), respectively, yields with

v = vecr (V) (2.25)

the ODE (2.22b) in the form

v̇ = b + AJ (�)v, v(0) = 0, b = b(�) = vecr (BW0) ∈ R
n,

(2.26a)

AJ (�) = (
AJ
ik(�)

)
i,k∈I ∈ R

n×n,

AJ
ik(�) =

{
ωik RSi (W0), k ∈ Ni ,

0, k /∈ Ni .
(2.26b)

v(t;�) = tϕ
(
t AJ (�)

)
b,

n := dim v(t;�) = |I ||J |, (2.26c)

where AJ (�) results from

vecr
(
A(�)V

) (2.23)= Diag(RS(W0)) vecr (�V)

= Diag(RS(W0))(� ⊗ I|J |)v (2.27a)

= AJ (�)v. (2.27b)

Using the Arnoldi iteration [21] with initial vector
q1 = b/‖b‖, we determine an orthonormal basis Qm =
(q1, . . . , qm) ∈ R

n×m of the Krylov space Km(AJ , b) of
dimension m. As will be validated in Sect. 4, choosing m ≤
10 yields sufficiently accurate approximations of the actions
of the matrix exponential expm and the ϕ operator on a vec-
tor, respectively, that are given by

expm
(
t AJ (�)

)
b ≈ ‖b‖Qm expm(t Hm)e1,

Hm = −Q�
m AJ (�)Qm, (2.28a)

tϕ
(
t AJ (�)

)
b ≈ t‖b‖Qmϕ(t Hm)e1. (2.28b)

The expression ϕ(t Hm)e1 results from computing the left-
hand side of the relation [8, Section 10.7.4]

expm

(
t Hm e1
0 0

)
=

(
expm(t Hm) ϕ(t Hm)e1

0 1

)
(2.29)

and extracting the upper-right vector. Since Hm is a small
matrix, any standard method [17] can be used for computing
the matrix exponential on the left-hand side.

3 Parameter Estimation

Section 3.1 details our approach for learning optimal weight
parameters for a given image and ground truth labeling: Rie-
mannian gradient descent is performed with respect to a
loss function that depends on the solution of the linearized
assignment flow. A closed-form expression of this gradient
is derived in Sect. 3.2 along with a low-rank approximation
in Sect. 3.3 that can be computed efficiently. As an alter-
native and baseline, we outline in Sect. 3.4 two gradient
approximations based on numerical schemes for integrating
the linearized assignment flow and automatic differentia-
tion.

3.1 Learning Procedure

Let

P� = {� ∈ R
|I |×|I |
+ : � satisfies (2.18)} (3.1)

denote the spaceofweight parametermatrices that parametrize
the similarity mapping (2.17). Due to (2.18) and (2.19), the
restrictions �i |N are strictly positive probability vectors,
as are the assignment vectors Wi defined by (2.7). There-
fore, similar to Wi ∈ S, we consider each �i |N as point
on a corresponding manifold (�|N |, gFR) equipped with the
Fisher–Rao metric and—in this sense—regard P� in (3.1) as
corresponding product manifold.

Let W ∗ ∈ W denote the ground truth labeling for a given
image, and let V ∗ = �0W ∗ ∈ T0 be a tangent vector such
that lims→∞ Exp1W (sV ∗) = W ∗. Our objective is to deter-
mine � such that, for some specified time T > 0, the vector

VT (�) := V (T ;�), (3.2)

given by (2.24) and corresponding to the linearized assign-
ment flow, approximates the direction of V ∗ and hence

lim
s→∞Exp1W

(
sVT (�)

) = W ∗. (3.3)

In this formula the direction of the vector VT (�) only is
relevant, but not its magnitude. A distance function that also
satisfies these properties is given by

fL : T0 → R, V �→ 1 − 〈V ∗, V 〉
‖V ∗‖‖V ‖ . (3.4)

In addition, we consider a regularizer

R : P� → R, � �→ τ

2

∑

i∈I
‖ti (�)‖2,

ti (�) = exp−1
1�

(�i |N), τ > 0 (3.5)

123

170 Journal of Mathematical Imaging and Vision (2023) 65:164–184

and define the loss function

L : P� → R, L(�) = fL
(
VT (�)

) + R(�), (3.6)

with VT (�) from (3.2). � is determined by the Riemannian
gradient descent sequence

�(k+1) = exp�(k)

(− h∇L(�(k))
)
, k ≥ 0,

�
(0)
i |N = 1|N |, i ∈ I (3.7)

with step size h > 0. Here

∇L(�) = R�∂L(�) (3.8)

is the Riemannian gradient with respect to the Fisher–Rao
metric. R� is given by (2.12) and (2.11b) and effectively
applies to the restrictions �i |N of the row vectors with all
remaining components equal to 0. It remains to compute the
Euclidean gradient ∂L(�) of the loss function (3.6) which is
presented in the subsequent Sect. 3.2.

3.2 Loss Function Gradient

In Sect. 3.2.2, we derive a closed-form expression for the
loss function gradient (Theorem 3.8), after introducing some
basic calculus rules for representing and computing differ-
entials of matrix-valued mappings in Sect. 3.2.1.

3.2.1 Matrix Differentials

Let F : Rm1×m2 → R
n1×n2 be a smooth mapping. Using the

canonical identification TE ∼= E of the tangent spaces of
any Euclidean space E with E itself, we both represent and
compute the differential

dF : Rm1×m2 → L(Rm1×m2 ,Rn1×n2) (3.9)

in terms of a vector-valued mapping f , which is defined by
F according to the commutative diagram

R
m1×m2 R

n1×n2

L(Rm1×m2 , Rn1×n2)∼= R
n1n2×m1m2

R
m1m2 R

n1n2

F

f

vecr vecr

dF

d f

(3.10)

In formulas, this means that based on the equation

vecr
(
F(X)

) = f
(
vecr (X)

)
, ∀X ∈ R

m1×m2 , (3.11)

we set

vecr
(
dF(X)Y) = d f

(
vecr (X)

)
vecr (Y),

∀X ,Y ∈ R
m1×m2 (3.12)

and hence define and compute the differential (3.9) asmatrix-
valued mapping

dF := d f ◦ vecr . (3.13)

The corresponding linear actions on Y ∈ R
m1×m2 and

vecr (Y) ∈ R
m1m2 , respectively, are given by (3.12). We state

an auxiliary result required in the next subsection, which
also provides a first concrete instance of the general relation
(3.12).

Lemma 3.1 (differential of the matrix exponential) If F =
expm : Rn×n → R

n×n, then (3.12) reads

vecr
(
d expm(X)Y

) = (
expm(X) ⊗ In

)
ϕ(−X ⊕ X�)

= vecr (Y),Y ∈ R
n×n, (3.14)

with ϕ given by (2.24).

Proof The result follows from [8, Thm. 10.13] where colum-
nwise vectorization is used, after rearranging so as to conform
to the row-stacking mapping vecr used in this paper. ��

3.2.2 Closed-Form Gradient Expression

Weseparate the computation ofL(�) and the gradient ∂L(�)

into several operations that were introduced in Sects. 2 and
3.1. We illustrate their composition and accordingly the pro-
cess from parameters � to a loss L(�) in the following flow
diagram that refers to quantities in (2.26) and (2.27) related
to the linearized assignment flow, after vectorization.

123

Journal of Mathematical Imaging and Vision (2023) 65:164–184 171

� S(W0) = exp1W

(
− 1

ρ
�D

)
b(�) = vecr (RW0 S(W0))

AJ (�) = Diag(RS(W0))(� ⊗ I|J |) vT (�) = Tϕ
(
T AJ (�)

)
b(�)

R(�) L(�) = fL(vT (�)) + R(�)

(M1) (M2)

(M3) (M4)

(M4)

(M5)

(3.15)

In what follows, we traverse this diagram from top-left to
bottom-right and collect each partial result by a correspond-
ing lemma or proposition. Theorem 3.8 assembles all results
and provides a closed-form expression of the loss function
gradient ∂L(�). To enhance readability, the proofs of most
lemmata are listed in Appendix A.1.

We focus on mapping (M1) in diagram (3.15).

Lemma 3.2 The differential of the function

f1 : R|I |×|I | → R
|I |×|J |,

� �→ f1(�) := S(W0) = exp1W

(
− 1

ρ
�D

)
,

D ∈ R
|I |×|J | (3.16)

and its transpose are given by

d f1(�)Y = − 1

ρ
R f1(�)(Y D), ∀Y ∈ R

|I |×|I |, (3.17a)

d f1(�)�Z = − 1

ρ
R f1(�)(Z)D�, ∀Z ∈ R

|I |×|J |, (3.17b)

with R f1(�) defined by (2.14).

Proof see Appendix A.1.
We consider mapping (M2) of diagram (3.15), taking into

account mapping (M4) and notation (3.16).

Lemma 3.3 The differential of the function

f2 : R|I |×|I | → R
|I |2 ,

� �→ f2(�) := b(�) = vecr
(
RW0 f1(�)

)
(3.18)

and its transpose are given by

d f2(�)Y = vecr
(
RW0d f1(�)Y

)
, ∀Y ∈ R

|I |×|I |
(3.19a)

d f2(�)�Z = d f1(�)�(RW0 Z), ∀Z ∈ R
|I |×|I |.

(3.19b)

Proof see Appendix A.1.
We note that d f2(�)� should act on a vector vecr (Z) ∈

R
|I |2 . We prefer the more compact and equivalent non-

vectorized expression (3.19b).
We turn tomapping (M3) of diagram (3.15) and use (3.15).

Lemma 3.4 The differential of the mapping

f3 : R|I |×|I | → R
n×n,

� �→ f3(�) := AJ (�) = Diag(R f1(�))(� ⊗ I|J |), n = |I ||J |
(3.20)

is given by

d f3(�)Y = Diag(dR f1(�)Y)(� ⊗ I|J |)
+ Diag(R f1(�))(Y ⊗ I|J |),
∀Y ∈ R

|I |×|I |. (3.21a)

Here,Diag(dR f1(�)Y) ∈ R
n×n is defined by (2.14b) and |I |

block matrices of size |J | × |J | on the diagonal of the form

dR f1i (�)Y = Diag
(
d f1i (�)Y

) − (
d f1i (�)Y

)
f1i (�)�

− f1i (�)
(
d f1i (�)Y

)�
, i ∈ I , (3.21b)

where d f1i (�)Y is given by

(dR f1i (�)Y)Si = (
(dR f1(�)Y)S

)
i , i ∈ I (3.21c)

for any S = (. . . , Si , . . .)� ∈ R
|I |×|J | and by (3.17a).

Proof see Appendix A.1.
We focus on the differential of the vector-valued mapping

vT (�) ∈ R
n of (3.15) with n given by (2.26c). We utilize the

fact that analogous to (2.29), the vector

vT (�) = Tϕ(T AJ (�))b(�) = (In, 0n) expm
(
A(�)

)
en+1

(3.22a)

can be extracted from the last column of the matrix

expm
(
A(�)

) =
(
expm

(
T AJ (�)

)
vT (�)

0�
n 1

)
,

123

172 Journal of Mathematical Imaging and Vision (2023) 65:164–184

A(�) =
(
T AJ (�) Tb(�)

0�
n 0

)
. (3.22b)

By means of relation (3.11), we associate a vector-valued
function fA with the matrix-valued mapping A through

vecr
(
A(�)

) = fA
(
vecr (�)

)
(3.23)

and record for later that, for any matrix Y ∈ R
|I |×|I |,

Eq. (3.12) implies

vecr
(
dA(�)Y

) = d fA
(
vecr (�)

)
vecr (Y). (3.24)

Lemma 3.5 The differential of the mapping A in (3.22b) is
given by

dA(�)Y

= T

(
d f3(�) d f2(�)

0�
n 0

) ((
1
1

)
⊗ Y

)
, ∀Y ∈ R

|I |×|I |.

(3.25)

Proof Equation (3.25) is immediate due to

dA(�) =
(
Td AJ (�)Y Tdb(�)Y

0�
n 0

)
(3.26)

and Lemmata 3.3 and 3.4. ��
Now we are in the position to specify the differential of the
solution to the linearized assignment flow with respect to the
regularizing weight parameters.

Proposition 3.6 Let

f4(�) := vT (�) := v(T ;�) (3.27)

denote the solution (2.26c) in vectorized form to the ODE
(2.22b). Then, the differential is given according to the con-
vention (3.13) by

d f4(�)Y

= T
(
d
(
ϕ
(
T AJ (�)

)
b(�)

) + ϕ
(
T AJ (�)

)
d f2(�)

)
Y

(3.28a)

where

d
(
ϕ
(
T AJ (�)

)
b(�)

)
Y (3.28b)

=
((

expm(T AJ (�)), vT (�)
) ⊗ e�

n+1

)

ϕ
(− A(�) ⊕ A(�)�

) · d fA
(
vecr (�)

)
vecr (Y), (3.28c)

∀Y ∈ R
|I |×|I |, (3.28d)

where AJ (�) is given by (2.26b), A(�) by (3.22b), d fA by
(3.24) and Lemma 3.5, and d f2 by Lemma 3.3.

Proof Equation (3.28a) follows directly from Eq. (2.26c)
and Lemma 3.3 makes explicit the second summand on the
right-hand side. It remains to compute the first summand.
Using (3.22) and the chain rule, we have for anyY ∈ R

|I |×|I |,

d
(
Tϕ(T AJ (�))b(�)

)

Y = (In, 0n)d expm
(
A(�)

)(
dA(�)Y

)
en+1. (3.29a)

Applying vecr to both sideswhich does not change the vector
on the left-hand side, yields by (2.3)

d
(
Tϕ(T AJ (�))b(�)

)
Y = (

(In, 0n)

⊗ e�
n+1

)
vecr

(
d expm

(
A(�)

)
(dA(�)Y)

)
. (3.29b)

Applying Lemma 3.1 and (3.24), we obtain

d
(
Tϕ(T AJ (�))b(�)

)
Y = (

(In, 0n) ⊗ e�
n+1

)

(
expm

(
A(�)

) ⊗ In+1
)
ϕ
(− A(�) ⊕ A(�)�

)
(3.29c)

· d fA
(
vecr (�)

)
vecr (Y) (3.29d)

and using (2.2) and (3.22b)

=
((

expm(T AJ (�)), vT (�)
) ⊗ e�

n+1

)

ϕ
(− A(�) ⊕ A(�)�

) · d fA
(
vecr (�)

)
vecr (Y).

(3.29e)

��
We finally consider the regularizing mappingR(�), defined
by (3.5) and corresponding to mapping (M5) in diagram
(3.15). Here, we have to take into account the constraints
(2.18) imposed on�. Accordingly,we define the correspond-
ing set of tangent matrices

Y� = {
Y ∈ R

|I |×|I | : 〈1N ,Yi |N 〉 = 0, ∀i ∈ I
}
. (3.30)

Lemma 3.7 The differential of the mapping R in (3.5) is
given by

dR(�)Y = τ
∑

i∈I

〈
ti (�),�0

(Yi
�i

)∣∣
∣N

〉
, ∀Y ∈ Y�.

(3.31)

Proof see Appendix A.1.
Putting all results together, we state the main result of this

section.

Theorem 3.8 (loss function gradient) Let

L(�) = fL
(
vT (�)

) + R(�) (3.32)

123

Journal of Mathematical Imaging and Vision (2023) 65:164–184 173

be a continuously differentiable loss function, where vT (�)

given by (2.26c) is the vectorized solution to the linearized
assignment flow (2.22b) at time t = T . Then, its gradient
∂L(�) is given by

〈∂L(�),Y 〉 = dL(�)Y , ∀Y ∈ Y� (3.33a)

with

dL(�)Y = 〈
∂ fL

(
vT (�)

)
, d f4(�)Y

〉 + dR(�)Y (3.33b)

and d f4(�) given by (3.28), and with dR(�)Y given by
Lemma 3.7.

Proof The claim (3.33) follows from applying the definition
of the gradient in (3.33a) and evaluating the right-hand side
using the chain rule and Proposition 3.6, to obtain (3.33b). ��

3.3 Gradient Approximation

In this section, we discuss the complexity of the evaluation
of the loss function gradient ∂L(�) as given by (3.33), and
we develop a low-rank approximation (3.47) that is compu-
tationally feasible and efficient.

3.3.1 Motivation

We reconsider the gradient ∂L given by (3.33). The gradient
involves the term d f4(�)Y , given by (3.28), which comprises
two summands. We focus on the computationally expensive
first summand on the right-hand side of (3.28a) given by
(3.28b)-(3.28c), i.e., the term

((
expm(T AJ (�)), vT (�)

) ⊗ e�
n+1

)
ϕ
(− A(�) ⊕ A(�)�

) · d fA
(
vecr (�)

)

︸ ︷︷ ︸
=:C(�)

vecr (Y). (3.34)

In order to evaluate the corresponding component of ∂L(�)

based on (3.33b), the matrix C(�) is transposed and multi-
plied with ∂ fL(vT (�)),

C(�)�∂ fL(vT (�)) (3.35a)

= d fA
(
vecr (�)

)�
ϕ
(− A(�)� ⊕ A(�)

)

·
((

expm(T AJ (�)), vT (�)
)� ⊗ en+1

)
∂ fL(vT (�))

(3.35b)

= d fA
(
vecr (�)

)�
ϕ
(− A(�)� ⊕ A(�)

)

·
((

expm(T AJ (�)), vT (�)
)� ⊗ en+1

)

· (
∂ fL(vT (�)) ⊗ (1)

)
(3.35c)

(2.2)= d fA
(
vecr (�)

)�
ϕ
(− A(�)� ⊕ A(�)

)

·
((

expm(T AJ (�)), vT (�)
)�

∂ fL(vT (�)) ⊗ en+1

)
.

(3.35d)

Thus, thematrix-valued functionϕ definedby (2.24) has to be
evaluates at a Kronecker sum of matrices and then multiplied
by a vector. The structure of this expression has the general
form

f (M1⊕M2)(b1 ⊗ b2), M1, M2 ∈ R
k×k, b1, b2 ∈ R

k,

(3.36)
where in our case we have
M1 = −A(�)�, M2 = A(�), k = n + 1 = |I ||J | + 1,

(3.37a)

b1 = (
expm(T AJ (�)), vT (�)

)�
∂ fL

(
vT (�)

)
, (3.37b)

b2 = en+1, f = ϕ. (3.37c)

As the following discussions also hold in the general set-
ting (3.36), we derive our gradient approximation in this full
generality. Afterward, we apply our setting to the gradient
approximation (3.47). First, we discuss two ways to com-
pute (3.36):

Direct Computation Compute the Kronecker sum M1 ⊕
M2, evaluate the matrix function ϕ and multiply the vec-
tor b1 ⊗ b2. This approach has space and time complexity
of at least O(k4), with k given by (3.37a). The complexity
might be even higher depending on how the function f is
evaluated.

Krylov Subspace Approximation Use the Krylov space
Km(M1⊕M2, b1⊗b2) for approximating (3.36), as explained
in Sect. 2.4. This approach has space complexity O(k2m2)

and time complexity O(k2(m + 1)) [22, p. 132].

Remark 3.9 (space complexity) Consider an image with
512 × 512 pixels (|I | = 262 144), |J | = 10 labels (i.e.,
k = |I ||J | + 1 = 2 621 441) and using 8 bytes per number.
Then the direct computation requires to store more than 1014

terabytes of data. The Krylov subspace approximation (with
m = 10) is significantly cheaper, but still requires to store
more than 5000 terabytes. Hence both methods are compu-
tationally infeasible especially in view of the fact that (3.36)
has to be recomputed in every step of the gradient descent
procedure (3.7).

3.3.2 An Approximation by Benzi and Simoncini

To reduce the memory footprint, we employ an approxi-
mation for computing (3.36), first discussed by Benzi and

123

174 Journal of Mathematical Imaging and Vision (2023) 65:164–184

Simoncini [6], and refine it using a new additional approx-
imation in Sect. 3.3.3. In the following, the notation from
Benzi andSimoncini is slightly adapted to our definition (2.1)
of theKronecker sum that differs fromBenzi andSimoncini’s
definition of the Kronecker sum (A⊕ B = B ⊗ I + I ⊗ A).

The approach uses the Arnoldi iteration [21] to deter-
mine orthonormal bases Pm , Qm and the corresponding
Hessenberg matrices T1 and T2 of the two Krylov subspaces
K(M1, b1),K(M2, b2). Thematrices are connected by a stan-
dard relation of Krylov subspaces [8, Section 13.2.1],

M1Pm = PmT1 + t1 pm+1e
�
m , (3.38a)

M2Qm = QmT2 + t2qm+1e
�
m , (3.38b)

where t1 ∈ R, pm+1 ∈ R
n (resp. t2 ∈ R, qm+1 ∈ R

n) refer to
the entries of the Hessenberg matrices and the orthonormal
bases in the next step of the Arnoldi iteration. With these
formulas, we deduce

(M1 ⊕ M2)(Pm ⊗ Qm)

(2.1)= (M1Pm ⊗ Qm) + (Pm ⊗ M2Qm) (3.39a)
(3.38)= (PmT1 + t1 pm+1e

�
m ⊗ Qm)

+(Pm ⊗ QmT2 + Pm ⊗ t2qm+1e
�
m) (3.39b)

= (Pm ⊗ Qm)(T1 ⊕ T2) + (t1 pm+1e
�
m ⊗ Qm)

+(Pm ⊗ t2qm+1e
�
m). (3.39c)

Ignoring the last two summands and multiplying by (Pm ⊗
Qm)� yields the approximation

(M1 ⊕ M2) ≈ (Pm ⊗ Qm)(T1 ⊕ T2)(Pm ⊗ Qm)�, (3.40)

which after applying f and multiplying b1 ⊗ b2 leads to the
approximation

f (M1 ⊕ M2)(b1 ⊗ b2)

≈ (Pm ⊗ Qm) f (T1 ⊕ T2)(Pm ⊗ Qm)�(b1 ⊗ b2) (3.41)

of the expression (3.36) as proposed byBenzi and Simoncini.
We note that, due to the orthonormality of the bases Pm and
Qm and their relation to the vectors b1, b2 that generate the
subspacesK(M1, b1),K(M2, b2), the approximation simpli-
fies to

f (M1 ⊕ M2)(b1 ⊗ b2)

≈ ‖b1‖‖b2‖(Pm ⊗ Qm) f (T1 ⊕ T2)e1 (3.42a)

= ‖b1‖‖b2‖ vecr
(
Pm vec−1

r

(
f (T1 ⊕ T2)e1

)
Q�

m

)
,

(3.42b)

where e1 ∈ R
m2

denotes the first unit vector.

Remark 3.10 (complexity of the approximation (3.42b))
Computing and storing the matrices Pm , Qm , T1 and T2
has space complexity O(2km2) and a time complexity of
O(2k(m + 1)) [22, p. 132]. Storing the matrices T1 ⊕ T2 and
f (T1 ⊕ T2) has complexity O(m4). Finally, multiplying the
three matrices Pm ∈ R

k×m , vec−1
r (f (T1 ⊕ T2)e1) ∈ R

m×m

and Q�
m ∈ R

m×k has time complexity O(k2m + km2) and
space complexity O(k2 + km).

Ignoring negligible terms (recall m � k), the entire
approximation has computational complexity O(k2m) and
storage complexityO(k2). Compared to theKrylov subspace
approximation of (3.36) discussed in the preceding section,
this is a reduction of space complexity by a factor m2.

Consider an image with 512×512 pixels (|I | = 262 144)
and |J | = 10 labels as in Remark 3.9. Then the approxima-
tion (3.42b) requires to store a bit more than 50 terabytes.
While this is a huge improvement compared to the 5000
terabytes from the Krylov approximation (see Remark 3.9),
using this approximation is still computationally infeasible.
This motivates why we introduce below an additional low-
rank approximation that yields a computationally feasible
and efficient gradient approximation.

3.3.3 Low-Rank Approximation

We consider again the approximation (3.42b)

f (M1 ⊕ M2)(b1 ⊗ b2)

≈ ‖b1‖‖b2‖ vecr
(
Pm vec−1

r

(
f (T1 ⊕ T2)e1

)
Q�

m

)

(3.43)

and decompose the matrix vec−1
r

(
f (T1 ⊕ T2)e1

) ∈ R
m×m

using the singular value decomposition (SVD)

vec−1
r

(
f (T1 ⊕ T2)e1

) =
∑

i∈[m]
σi yi ⊗ z�i , (3.44)

with yi , zi ∈ R
m and the singular values σi ∈ R, i ∈ [m].

As m is generally quite small, computing the SVD is neither
computationally nor storage-wise expensive.We accordingly
rewrite the approximation in the form

‖b1‖‖b2‖ vecr
(
Pm vec−1

r

(
f (T1 ⊕ T2)e1

)
Q�

m

)
(3.45a)

= ‖b1‖‖b2‖ vecr
⎛

⎝Pm
(∑

i∈[m]
σi yi ⊗ z�i

)
Q�

m

⎞

⎠

(3.45b)

= ‖b1‖‖b2‖
∑

i∈[m]
σi (Pm yi) ⊗ (Qmzi). (3.45c)

123

Journal of Mathematical Imaging and Vision (2023) 65:164–184 175

Remark 3.11 (space complexity) While the factorized form
(3.45c) is equal to the approximation (3.42b), it requires
only a fraction of the storage space: The intermediate results
require storing m singular values and k numbers for each
Pm yi andQmzi , and thefinal approximationhas an additional
storage requirement of O(2km). In total O(4km) numbers
need to be stored.

For a 512 × 512 pixels image with 10 labels (see
Remark 3.9), storing this approximation requires at most a
gigabyte of memory.

In practice, this can be further improved:Numerical exper-
iments show that the singular values decay very rapidly, such
that just the first singular value can be used to obtain the gra-
dient approximation

f (M1 ⊕ M2)(b1 ⊗ b2) ≈ ‖b1‖‖b2‖σ1(Pm y1) ⊗ (Qmz1).
(3.46)

Numerical results in Sect. 4 demonstrate that this approxi-
mation is sufficiently accurate.

Remark 3.12 (space complexity) The term ‖b1‖‖b2‖σ1(Pm
y1) ⊗ (Qmz1) requires to store O(2k) numbers, i.e., about
twice as much storage space as the original image. In total,
we need to storeO(2k+2km) numbers. The required storage
for the running example (see Remark 3.9) now adds up to less
than 500 megabytes.

We conclude this section by returning to our problem using
the notation (3.37) and state the proposed low-rank approxi-
mation of the loss function gradient. By (3.33), (3.35), (3.37)
and (3.46), we have

∂L(�) ≈ c(�) · vec−1
r

(
d fA

(
vecr (�)

)�(
σ1(Pm y1) ⊗ (Qmz1)

)

(3.47a)

where

c(�) = ∥∥(
expm(T AJ (�)), vT (�)

)�
∂ fL

(
vT (�)

)∥∥,

(3.47b)

vT (�) = v(T ;�) (cf. (2.26c)) (3.47c)

σ1y1 ⊗ z�1 ≈ vec−1
r

(
ϕ(T1 ⊗ T2)e1

)
.

(largest singular value and vectors) (3.47d)

Here, the matrices Pm, Qm, T1, T2 result from the Arnoldi
iteration, cf. (3.38), that returns the two Krylov subspaces
used to approximate the matrix vector product ϕ(−A(�)�⊕
A(�))b1, with b1 given by (3.37b).

3.4 Computing the Gradient Using Automatic
Differentiation

An entirely different approach to computing the gradient
∂L(�) of the loss function (3.6) is to not use an approxi-

mation of the exact gradient given in closed form by (3.8),
but to replace the solution vT (�) to the linearized assign-
ment flow in (3.33b) by an approximation determined by
a numerical integration scheme and to compute the exact
gradient therefrom. Thus, one replaces a differentiate-then-
approximate approach by an approximate-then-differentiate
alternative. We numerically compare these two approaches
in Sect. 4.

We sketch the latter alternative. Consider again the loss
function (3.6) evaluated at the linearized assignment flow
integrated up to time T

L(�) = fL
(
vT (�)

)
. (3.48)

Gradient approximations determined by automatic differen-
tiation depend on what numerical scheme is used. We pick
out two basic choices out of a broad range of proper schemes
studied in [27]. In both cases, we implemented the loss func-
tion fL in PyTorch together with the functions � �→ AJ (�)

and � �→ b(�) given by (2.26). Now two approxima-
tions can be distinguished depending on how the mappings
(AJ (�), b(�)) �→ vT (�) = v(T ;�) are implemented.

Automatic Differentiation Based on the Explicit Euler
SchemeWepartition the interval [0, T] intoT /h subintervals
with some step size h > 0 and use the iterative scheme

v(k+1) =v(k+1)+h
(
AJ (�)v(k)+b(�)

)
, v(0) = 0,

(3.49)

in order to approximate vT (�) ≈ v(T /h) the solution to the
linearized assignment flow ODE (2.26a). As the computa-
tions only involve basic linear algebra, PyTorch is able to
compute the gradient using automatic differentiation.

Automatic Differentiation Based on Exponential Inte-
gration The second approximation utilizes the numerical
integration scheme developed in Sect. 2.4. Again, only basic
operations of linear algebra are involved so that PyTorch
can compute the gradient using automatic differentiation.
The more special matrix exponential (2.29) is computed by
PyTorch using a Taylor polynomial approximation [4].

Both approaches determine an approximation of the
Euclidean gradient ∂L(�) which we subsequently convert
into an approximation of the Riemannian gradient using
Eq. (3.8).

4 Experiments

In this section, we report and discuss a series of experiments
illustrating our novel gradient approximation (3.47) and the
applicability of the linearized assignment flow to the image
labeling problem.

123

176 Journal of Mathematical Imaging and Vision (2023) 65:164–184

Westartwith a discussion of the data generation (Sect. 4.1)
and the general experimental setup (Sect. 4.2), before dis-
cussing properties of the gradient approximation (Sect. 4.3).
In order to illustrate a complete pipeline that can also label
previously unseen images, we trained a simple parameter
predictor and report its application in Sect. 4.4.

4.1 Data Generation

As for the experiments, we focused on the image labeling
scenarios depicted in Fig. 1a, b. Each scenario consists of a set
containing five 128×128 pixel images with randomVoronoi
structure, in order to mimic low-dimensional structure that
has to be separated in noisy data from the background. This
task occurs frequently in applications and cannot be solved
without adaptive regularization.

For the design of the parameter predictor (Sect. 4.4), we
used all patches of five additional unseen images for valida-
tion. In all cases we report the mean over all labeled pixels
of 5 training and validation images, respectively. In order to
test the resilience to noise, we added Gaussian noise to the
images. The ground truth labeling is, in both labeling scenar-
ios, given by the noiseless version of the images.

In the first scenario illustrated in Fig. 1a, we want to sepa-
rate the boundary of the cells (black label) from their interior
(white label). The main difficulty here is to preserve the thin
line structures even in the presence of image noise. Weight
patcheswith uniform (uninformed)weights average outmost
of the lines as Fig. 1c shows.

In the second scenario illustrated in Fig. 1b, we label the
Voronoi cells according to their color represented by 8 labels.
Due to superimposed noise, a pixelwise local rounding to the
nearest label yields about 50% wrongly labeled pixels, see
Fig. 1d.

4.2 Experimental Setup

Features and Parametrization For simplicity, we used the
raw image data in a 3 × 3 window around each pixel as
feature (2.6) for this pixel. Weight patches (ωik)k∈Ni in the
�-matrix (2.18) also had the size of 3×3 pixels in all exper-
iments. While the linearized assignment flow works with
arbitrary features and also with larger neighborhood sizes for
the weight parameters, the above setup suffices to illustrate
and substantiate the contribution of this paper.

Performance Measure All labelings were evaluated on
the tangent space of the assignment manifold using the loss
function fL given by (3.4). Since the values of this func-
tion are rather abstract, however, we report the percentage of
wrongly labeled pixels in all performance plots.

Gradient Computation We evaluated the loss function
and approximated its Riemannian gradient in three differ-
ent ways, as further detailed in Sect. 4.3, throughout using

uniform (uninformed)weight patches as initialization. In par-
ticular, other common ways to update the parameters, like
Adam or AdaMax [15], are possible as well, in conjunction
with our approach. Therefore, we also compared gradient
approximations based on our approach with the results of
automatic differentiation, as implemented by PyTorch [19].

Parameter Prediction Parameter prediction for labeling
novel data relies on the relation of features extracted from
training data to corresponding parameters estimated by the
Riemannian gradient descent (3.7). For any feature extracted
from novel data, the predictor specifies the parameters, to
be used for labeling the data by integrating the linearized
assignment flow after substituting the predicted parameters.
Details are provided in Sect. 4.4.

4.3 Properties of the Gradient Approximation

In this section, we report results that empirically validate our
novel gradient approximation (3.47) by means of parameter
estimation for the linearized assignment flow.

First, we compared our gradient approximation with two
methods based on automatic differentiation (backpropaga-
tion), see also Sect. 3.4. To this end, we implemented in
PyTorch [19] the simple explicit Euler scheme (3.49) for
integrating the linearized assignment flow and computed
the gradient of the loss function L(�) (3.6) with respect
to � using automatic differentiation. Similarly, the Krylov
subspace approximation (2.28b) of the solution of the lin-
earized assignment flow was implemented in PyTorch. As
all involved computations in this approximation are basic
linear algebra operations, PyTorch is able to apply automatic
differentiation for evaluating the gradient.

These gradients are used for carrying out the gradi-
ent descent iteration (3.7) in order to optimize the weight
parameters. Figure2 illustrates the comparison of the three
approaches. Although they rely on quite different princi-
ples, we observe a remarkable comparability of the three
approaches with respect to the reduction of the percentage of
wrongly labeled pixels per training iteration, for both noisy
and noiseless images. In particular, our low-rank approx-
imation based on the closed-form loss function gradient
expression is competitive. In view of the minor differences
between the curves, we point out that changing hyperparam-
eters, like the step size in the gradient descent or the scale
parameter τ of the regularizer R in (3.5), have a greater
effect on the training performance than the choice of either
of the three approaches. Overall, these results validate the
closed-form formulas in Sect. 3.2 and, in particular, Theorem
3.8, and the subsequent low-rank approximation in Sect. 3.3.
We point out, however, that our approach only reveals data-
dependent low-dimensional subspaces where the essential
parameters of the linearized assignment flow reside.

123

Journal of Mathematical Imaging and Vision (2023) 65:164–184 177

Fig. 1 Randomized scenarios
for training and testing. Two
randomly generated images for
the two respective scenarios that
were used to evaluate weight
parameter estimation and
prediction. a Random line
structure whose accurate
labeling requires to adapt weight
parameters. b Random Voronoi
cells to be labeled by pixelwise
assignment of one of the colors
(, , , , , , ,). In both
cases, Gaussian noise was
added. The resulting noisy
images are shown in the lower
part of either panel (rescaled in
the color channels to avoid color
clipping). c The amount of noise
is chosen quite large such that a
labeling with uniform
(“uninformed non-adaptive”)
weights completely destroys the
thin line structure in a. d A
pixelwise local nearest label
assignment yields around 50%
wrongly labeled pixels for the
labeling scenario depicted in b.
Both of these naive parameter
settings indicate the need for a
more structured choice of the
weight patches, by taking into
account local image features in a
local spatial neighborhood

Next, we compared our gradient approximation to the
exact gradient on a per-pixel basis. However, as the exact
gradient is computationally infeasible, we used the gradient
produced by automatic differentiation of the explicit Euler
scheme with a very small step size as surrogate. Figure3a
demonstrates the high accuracy of our gradient approxima-
tion. A pixelwise illustration of the gradient approximation,
at the initial step of the training procedure for adapting the
parameters, is provided in Fig. 3b. The set of pixels with
nonzero loss function gradient concentrate around the line
structure since here weight adaption is required to achieve a
proper labeling.

Our last three experiments regarding the gradient approx-
imation, illustrated in Fig. 4, concern

• the influence of the Krylov dimension m,
• the rank of our approximation, and
• the time T up to which the linearized assignment flow is
integrated.

Weobserve according to Fig. 4a that alreadyKrylov subspace
of small dimension m ≈ 10 suffice for computing linearized
assignment flows and learning their parameters. Similarly,
the final rank-one gradient approximation of the gradient
according to Eq. (3.46) suffices for parameter estimation,
as illustrated in Fig. 4b. These experiments show that quite
low-dimensional representations suffice for representing the
information required for optimal regularization of dynamic
image labeling. We point out that such insights cannot be
gained from automatic differentiation.

123

178 Journal of Mathematical Imaging and Vision (2023) 65:164–184

(a) (b)

Fig. 2 Comparing gradient approximation and automatic differentia-
tion. Both figures show, for the second scenario depicted in Fig. 1b, the
effect of parameter learning in terms of the labeling error during the
training procedure (3.7). a Shows the result for noisy input data, b or
noiseless input data. Note the different scales of the two ordinates. As

is exemplarily shown here by both figures, we generally observed very
similar results for all three algorithms which validates the closed-form
formulas in Sect. 3.2 and the subsequent subspace approximation in
Sect. 3.3

The influence of the time T used for integrating the lin-
earized assignment flow on parameter learning is illustrated
in Fig. 4c. For the considered parameter estimation setup, we
observe that already small integration times T yield good
training results, whereas large times T yield slower conver-
gence. A possible explanation is that, in the latter case, the
linearized assignment flow is close to an integral solution
which, when erroneous, is more difficult to correct.

4.4 Parameter Prediction

Besides parameter learning, parameter prediction for unseen
test data defines another important task. This task amounts
to model and represent the relation of local features and opti-
mal weight parameters, as basis to predict proper weights in
unseen test data as a function of corresponding local features.

We illustrate this for the scenario depicted in Fig. 1a using
the following simple end-to-end learned approach to parame-
ter prediction. We trained a predictor that produces a weight
patch �̂i given the features fi at vertex i of novel unseen
data. The predictor is parameterized with N = 50 by

p j ∈ R
3|N |, j ∈ [N] feature prototypes, (4.1a)

ν j ∈ T0, j ∈ [N]
tangent vectors representing prototypical weight patches,

(4.1b)

and a scale parameter σ ∈ R. Similar to the assignment vec-
tors (2.7), the to-be-predictedweight patches �̂i are elements
of the probability simplex �̊|Ni |, see (2.18). Accordingly,
use tangent vector ν j ∈ T0 to represent weight patches. In
particular, tangent vector of predicted weight patches result

fromweight averaging of vectors {ν j } j∈[N], and the predicted
weight patch by lifting, see (4.4).

We initialize σ = 1 and initialize the p j , j ∈ [N] by clus-
tering noise-free patches extracted from of training images.
Given p j , we initialize ν j such that it is directed toward the
label of the corresponding prototypical patch,

ν j = �0
(
e−‖p j,1−p j,center pixel‖, . . . , e−‖p j,|N |−p j,center pixel‖)�

,

j ∈ [N]. (4.2)

The predictor is trained by the following gradient descent
iteration. As the change in the number of wrongly labeled
pixels was small, we stopped the iteration after 100 steps,
see Fig. 5c.

(1) We compute the similarities

si j = e−σ‖ fi−p j‖, j ∈ [N] (4.3)

for each fi and pixels i in all training images.
(2) We predict the corresponding weight patches as lifted

weighted average of the tangent vectors ν j

�̂i (ν, p, σ) = exp1�

⎛

⎝
∑

j∈[N]

si j∑
k∈[N] sik

ν j

⎞

⎠ . (4.4)

(3) Substituting �̂ for �, we run the linearized assignment
flow and evaluate the distance function (3.4).

123

Journal of Mathematical Imaging and Vision (2023) 65:164–184 179

(b)(a)

Fig. 3 Checking the gradient approximation at each pixel. We evalu-
ated our gradient approximation (3.47), at the first step of the training
iteration and at each pixel, for the scenario depicted in Fig. 1a. As a
proxy for the exact but computationally infeasible gradient, we used
the gradient produced by automatic differentiation of the explicit Euler
scheme with a very small step size. Then, we compared both gradients
at each pixel using the cosine similarity, i.e., the value 1 means that the
gradients point exactly in the same direction, whereas 0 signals orthog-
onality and−1means that they point in opposite directions. aMore than
99% of the pixels have a value of 0.9 or more, corresponding to an angle

of 26◦ or less between the gradient directions. This illustrates excellent
agreement between our gradient approximation and the exact gradient.
Disagreements with the exact gradient occur rarely and randomly at iso-
lated pixels throughout the image. bNormof the gradients are displayed
at each pixel. Non-vanishing norms indicate where parameter learning
(adaption) occurs. Since the initial weight parameter patches are uni-
form, no adaption—corresponding to zero norms of gradients—occurs
in the interior of each Voronoi cell, because parameters are already
optimal in such homogeneous regions

(a) (b) (c)

Fig. 4 Influence of Krylov subspace dimension, rank of the gradi-
ent approximation and integration time. The setup of Fig. 2 was used
to demonstrate the influence of the Krylov subspace dimension, the
low-rank approximation and the integration time T on our gradient
approximation for parameter learning. a In general, we observed that
Krylov dimensions of 5 to 10 are sufficient formost experiments. Larger
Krylov dimensions only increase the computation time without any
noticeable improvement of accuracy. b Training curves for different

low-rank approximations coincide. This illustrates that just selecting
the largest singular value and vectors in (3.47), according to the final
rank-one approximation (3.46), suffices for parameter learning. c For
small integration times T , the convergence rates of training do not much
differ. Only for larger time points T , we observe slower convergence of
training, presumably because almost hard decisions aremore difficult to
correct by changing the parameters of the underlying dynamical system

(4) The gradient of this functionwith respect to the predictor
parameters (ν, p, σ) results from composing the differ-
ential due to Theorem 3.8 and the differential of (4.4).

(5) The gradient is used to update the predictor parameters,
and all steps are repeated.

During training, the accuracy of the predictor is monitored,
as illustrated in Fig. 5c. The iteration terminates when the
slope of the validation curve, which measures label changes,
are sufficiently flat.

After the training of the predictor, the linearized assign-
ment flow is parametrized in a data-driven way so as to
separate reliably line structure in noisy data for arbitrary ran-

123

180 Journal of Mathematical Imaging and Vision (2023) 65:164–184

(a) (b) (c)

(f)(e)(d)

Fig. 5 Parameter predictor. We learned a weight patch predictor as
described in Sect. 4.4 for the scenario depicted in Fig. 1a. In order
to assess the predicted parameters by comparison, we also estimated
weights patches for the noise-free test data in the same way as for the
training data. a Section of a noise-free test image. b The corresponding
section of the noisy test image that is used as input data for prediction.
c The training and validation accuracy during the training of the predic-

tor. d Weight patches estimated for the noise-free data (a). e Predicted
weight patches based on the noisy data (b). (f) The labeled (section
of the) test image using the predicted weight patches (d). Comparing
this result to the result depicted in Fig. 1c shows the effect of predicted
parameter adaption. Last row: Further labelings on unseen noisy ran-
dom test images

123

Journal of Mathematical Imaging and Vision (2023) 65:164–184 181

dom instances, as depicted in Fig. 5: panel (f) and last row.
This result should be compared to the non-adaptive labeling
result in Fig. 1c.

5 Conclusion and Further Work

5.1 Conclusion

Wepresented a novel approach for learning the parameters of
the linearized assignment flow for image labeling. Based on
the exact formula of the parameter gradient of a loss function
subject to the ODE-constraint, an approximation of the gra-
dient was derived using exponential integration and a Krylov
subspace based low-rank approximation, that is memory effi-
cient and sufficiently accurate. Experiments demonstrate that
our research implementation is on par with highly tuned-
machine learning toolboxes. Unlike the latter, however, our
approach additionally returns the essential information for
image labeling in terms of a low-dimensional parameter sub-
space.

5.2 FutureWork

Our future work will study generalizations of the linearized
assignment flow. Since this can be done within the overall
mathematical framework of the assignment flow approach,
the result presented in this paper is applicable. We briefly
indicate this for the continuous-time ODE (1.1) that we write
down here again with an index 0,

V̇0 = A0(�0)V0 + B0. (5.1)

Recall that B0, given by BW0 of (2.22b), represents the input
data (2.15) via the mappings (2.16) and (2.17). Now suppose
the data are represented in another way and denoted by B1.
Then, consider the additional system

V̇1 = A1(�1)V1 + B1 + V0(T)L, (5.2)

where the solution V0(T0) to (5.1) at time t = T0, possibly
transformed to a tangent subspace by a linear mapping L ,
modifies the data term B1 of (5.2). Applying (2.24) to (5.1)
at time t = T0 and to (5.2) at time t = T1 yields the solution

V1(T1) = T1ϕ
(
T1A1(�)

)(
B1 + T0ϕ

(
T0A0(�0)

)
B0L

)
,

(5.3)

which is a composition of linearized assignment flows and
hence linear too, due to the sequential coupling of (5.1) and
(5.2). Parallel coupling of the dynamical systems is feasi-
ble as well and leads to larger matrix ϕ that is structured

and linearly depends on the components A0(�0), A1(�1), L .
Designing larger networks of this sort by repeating these steps
is straightforward.

In either case, the overall basic structure of (1.1), (1.3) is
preserved.This enables us to broaden the scopeof assignment
flows for applications and to study, in a controlled manner,
various mathematical aspects of deep networks in terms of
sequences of generalized linearized assignment flow, analo-
gous to (1.6).

Acknowledgements This work is funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy EXC2181/1 - 390900948 (theHeidelberg STRUC-
TURES Excellence Cluster), and within the DFG priority programme
2298 on the “Theoretical Foundations of Deep Learning,” grant SCHN
457/17-1.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A. Proofs

A.1. Proofs of Sect. 3.2.2

Proof of Lemma 3.2 Regarding the differential of the map-
ping (2.11e) with respect to its second argument, we have
d expp(u)v = Rexpp(u)v by [27, Lemma 4.5], with R given
by (2.11b). Applying this relation to (3.16) where exp1W
acts row-wise analogous to the mapping RW as explained by
(2.12) and (2.14), yields

d f1(�)Y = Rexp1W (− 1
ρ
�D)

(
− 1

ρ
Y D

)

= R f1(�)

(
− 1

ρ
Y D

)
, ∀Y ∈ R

|I |×|I |, (A.1)

which is (3.17a). As for the transpose,we vectorize both sides
using again (2.14),

vecr
(
d f1(�)Y

) = Diag(R f1(�)) vecr
(

− 1

ρ
Y D

)

= − 1

ρ
Diag(R f1(�))(I|I | ⊗ D�) vecr (Y). (A.2)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

182 Journal of Mathematical Imaging and Vision (2023) 65:164–184

Applying the transposed matrix to any vector vecr (Z) with
Z ∈ R

|I |×|J | and taking into account the symmetry of the
matrix Diag(R f1(�)), yields

d f1(�)�Z = − 1

ρ
vec−1

r

(
(I|I | ⊗ D)Diag(R f1(�)) vecr (Z)

)

(A.3a)

(2.14)= − 1

ρ
vec−1

r

(
(I|I | ⊗ D) vecr (R f1(�)Z)

)

= − 1

ρ
R f1(�)(Z)D�. (A.3b)

Proof of Lemma 3.3 Since RW0 does not depend on � and
vecr is linear, we directly obtain (3.19a). Regarding the trans-
pose map, we expand the right-hand side of (3.19a),

d f2(�)Y
(2.14)= Diag(RW0) vecr (d f1(�)Y)

(A.2)= − 1

ρ
Diag(RW0)Diag(R f1(�))(I|I | ⊗ D�) vecr (Y).

(A.4)

Applying the transposed matrix to any vector vecr (Z) ∈
R

|I |2 yields (recall that thematricesDiag(RW0),Diag(R f1(�))
are symmetric)

d f2(�)�Z = − 1

ρ
vec−1

r
(
(I|I | ⊗ D)

Diag(R f1(�))Diag(RW0) vecr (Z)
)

(A.5a)

(2.14)= − 1

ρ
vec−1

r
(
(I|I | ⊗ D)Diag(R f1(�))

vecr (RW0 Z)
)

(A.5b)
(2.14)= − 1

ρ
vec−1

r

(
(I|I | ⊗ D) vecr

(
R f1(�)(RW0 Z)

))

= − 1

ρ
R f1(�)(RW0 Z)D� (A.5c)

(3.17b)= d f1(�)�(RW0 Z). (A.5d)

��
Proof of Lemma 3.4 We have

d f3(�)Y = (
d Diag(R f1(�))Y

)
(� ⊗ I|J |)

+Diag(R f1(�))(Y ⊗ I|J |), ∀Y ∈ R
|I |×|I | (A.6)

and have to the differential in the first summand on the right-
hand side. By (2.14),

Diag(R f1(�)) vecr (S) = vecr (R f1(�)S), ∀S ∈ R
|I |×|J |

(A.7)

and hence d Diag(R f1(�)) is given by

(
d Diag(R f1(�))Y

)
vecr (S) = vecr

(
(dR f1(�)Y)S

)
,

∀Y ∈ R
|I |×|I |, ∀S ∈ R

|I |×|J |. (A.8)

It remains to compute dR f1(�) and to evaluate the defining
right-hand side, to obtain the left-hand side in explicit form.
Focusing on a single component R f1i (�) of the mapping
R f1(�), we have by (2.11b)

R f1i (�) = Diag
(
f1i (�)

) − f1i (�) f1i (�)� (A.9a)

dR f1i (�)Y = Diag
(
d f1i (�)Y

)

− (
d f1i (�)Y

)
f1i (�)� − f1i (�)

(
d f1i (�)Y

)�

(A.9b)

and hence for any Si ∈ R
|J | and S = (. . . , Si , . . .)� ∈

R
|I |×|J |

(dR f1i (�)Y)Si = (
(dR f1(�)Y)S

)
i , i ∈ I . (A.9c)

Thus, analogous to (2.14), we obtain

(dR f1(�)Y)S = (
. . . , (dR f1i (�)Y)Si , . . .)

�

= vec−1
r

((
Diag(dR f1(�))Y

)
vecr (S)

)
.

(A.9d)

Applying vecr to both sides and comparing with (A.8), we
conclude

d Diag(R f1(�))Y = Diag(dR f1(�)Y) (A.9e)

which proves (3.21). ��

Proof of Lemma 3.7 The mapping expp specified by (2.11e)
satisfies expp = expp ◦�0 and a short computation [3,
Appendix]) shows that the restriction expp |T0 , again denoted
by expp, has the inverse

exp−1
p : S → T0, q �→ �0(log q − log p) (A.10)

and consequently the differential

d exp−1
p (q)u = �0

(u
q

)
, u ∈ T0. (A.11)

For W , W̃ ∈ W and V ∈ T0, this differential applies com-
ponentwise, i.e.,

(
d exp−1

W (W̃)V
)
i = �0

(Vi
W̃i

)
, i ∈ I . (A.12)

Application to (3.5) yields for any Y ∈ Y� Eq. (3.31). ��

123

Journal of Mathematical Imaging and Vision (2023) 65:164–184 183

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,
Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. OSDI (2016)

2. Al-Mohy, A.H., Higham, N.J.: Computing the action of the matrix
exponential, with an application to exponential integrators. SIAM
J. Sci. Comput. 33(2), 488–511 (2011)

3. Åström, F., Petra, S., Schmitzer, B., Schnörr, C.: Image labeling by
assignment. J. Math. Imaging Vis. 58(2), 211–238 (2017)

4. Bader, P., Blanes, S., Casas, F.: Computing the matrix exponential
with an optimized Taylor polynomial approximation. Mathematics
7(12), 1174 (2019)

5. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Auto-
matic differentiation inmachine learning: a survey. J. Mach. Learn.
Res. 18, 1–43 (2018)

6. Benzi, M., Simoncini, V.: Approximation of functions of large
matrices with Kronecker structure. Numer. Math. 135(1), 1–26
(2017)

7. Graham, A.: Kronecker Products andMatrix Calculus: with Appli-
cations. Ellis Horwood Limited, New York (1981)

8. Higham, N.J.: Functions of Matrices: Theory and Computation.
SIAM, Philadelphia (2008)

9. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge
University Press, Cambridge (1991)

10. Hochbruck, M., Lubich, C.: On Krylov subspace approximations
to the matrix exponential operator. SIAM J. Numer. Anal. 34(5),
1911–1925 (1997)

11. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential
Equations I, 3rd edn. Springer, London (2008)

12. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta
Numer. 19, 209–286 (2010)

13. Hochbruck, M., Ostermann, A., Schweitzer, J.: Exponential
Rosenbrock-type methods. SIAM J. Numer. Anal. 47(1), 786–803
(2009)

14. Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie-group
methods. Acta Numer. 09, 215–365 (2000)

15. Kingma, D.P. , Ba, J.: Adam: a method for stochastic optimization
(2015). arXiv:1412.6980

16. Kandolf, P., Koskela, A., Relton, S.D., Schweitzer, M.: Comput-
ing low-rank approximations of the Fréchet derivative of a matrix
function using Krylov subspace methods. Numer. Linear Algebra
Appl. 28, e2401 (2021)

17. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the
exponential of a matrix, twenty-five years later. SIAM Rev. 45(1),
3–49 (2003)

18. Niesen, J., Wright, W.M. : Algorithm 919: a Krylov subspace
algorithm for evaluating the ϕ-functions appearing in exponential
integrators. ACM Trans. Math. Softw. 38(3), Article 22 (2012)

19. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,
A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chil-
amkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch:
An Imperative Style, High-Performance Deep Learning Library,
NIPS, vol. 32. Curran Associates Inc., Red Hook (2019)

20. Saad, Y.: Analysis of some Krylov subspace approximations to the
matrix exponential operator. SIAMJ.Numer. Anal. 29(1), 209–228
(1992)

21. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM,
Philadelphia (2003)

22. Saad,Y.:NumericalMethods for LargeEigenvalue Problems,Clas-
sics in Applied Mathematics. Society for Industrial and Applied
Mathematics, Philadelphia (2011)

23. Schnörr, C.: Assignment flows. In: Grohs, P., Holler, M., Wein-
mann, A. (eds.) VariationalMethods for Nonlinear Geometric Data
and Applications, pp. 235–260. Springer, Berlin (2020)

24. Teschl, G.: Ordinary Differential Equations and Dynamical Sys-
tems, Graduate Studies in Mathematics, vol. 140. Amer. Math.
Soc., Ann Arbor (2012)

25. Van Loan, C.F.: The ubiquitous Kronecker product. J. Comput.
Appl. Math. 123, 85–100 (2000)

26. Zeilmann, A., Petra, S., Schnörr, C.: Learning linear assignment
flows for image labeling via exponential integration. In: Elmoataz,
A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds.) Scale Space
and Variational Methods in Computer Vision (SSVM), vol. 12679,
pp. 385–397. LNCS (2021)

27. Zeilmann, A., Savarino, F., Petra, S., Schnörr, C.: Geometric
numerical integration of the assignment flow. Inverse Probl. 36(3),
034004 (2020)

28. Zern, A., Zeilmann, A., Schnörr, C.: Assignment Flows for Data
Labeling onGraphs: Convergence and Stability. Inf. Geom. 5, 355–
404 (2022). https://doi.org/10.1007/s41884-021-00060-8

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Alexander Zeilmann received his
B.Sc. degree (2015) from TU
Munich, Germany, with one
semester at Utrecht University,
Netherlands, and his M.Sc. degree
in Mathematics (2017) from Hei-
delberg University, Germany. Cur-
rently, he is a Ph.D. student at
Heidelberg University. His research
interests include high-dimensional
numerical analysis, dynamical sys-
tems on manifolds, machine learn-
ing and their applications to image
analysis and mathematical model-
ing for medicine.

Stefania Petra received her B.Sc.
degree in Mathematics and Com-
puter Science in 2001 and her
M.Sc. in Mathematics in 2003
from the Babes-Bolyai University
of Cluj-Napoca. In 2006, she
received her Ph.D. degree from
the University of Würzburg in the
field of numerical optimization.
She continued working as a
research fellow in the University
of Mannheim and Heidelberg in
the field of mathematical image
processing. During 2013–2015,
she was a Margarete von Wrangell

Fellow within the postdoctoral lecture qualification program of the
Ministry of Science, Research and Arts of the state of Baden Würt-
temberg in Germany. Since 2015, she is an Assistant Professor at

123

http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/s41884-021-00060-8

184 Journal of Mathematical Imaging and Vision (2023) 65:164–184

Heidelberg University where she is leading the Mathematical Imaging
Group at the Institute of Applied Mathematics. Her research interests
include mathematical models and computational approaches for data
analysis and machine learning using variational methods, information
geometry, sparsity representation and numerical optimization with an
emphasis on imaging applications.

Christoph Schnörr received his
degrees from the Technical Uni-
versity of Karlsruhe (1991) and
the University of Hamburg (1998),
respectively. He became full
professor at the University of
Mannheim in 1998. In 2008, he
joined the Heidelberg University
where he is heading the Image
and Pattern Analysis Group at the
Institute of Applied Mathematics.
From 2005–2014, he was co-
Editor in Chief of the Interna-
tional Journal of Computer Vision
(Springer). At present, he is mem-

ber of the Editorial Boards of the Journal of Mathematical Imaging
and Vision (JMIV, Springer) and the SIAM Journal of Imaging Sci-
ences (SIIMS, SIAM). He serves as member on the steering board of
the cluster of excellence STRUCTURES and in the Interdisciplinary
Center for Scientific Computing (IWR), both at the Heidelberg Uni-
versity. His research focuses on mathematical models of image anal-
ysis and machine learning, based on differential geometry, dynamical
systems on manifolds and numerical optimization.

123

	Learning Linearized Assignment Flows for Image Labeling
	Abstract
	1 Introduction
	1.1 Overview, Motivation
	1.2 Related Work
	1.3 Contribution, Organization

	2 Preliminaries
	2.1 Basic Notation
	2.2 Assignment Flow
	2.3 Linearized Assignment Flow
	2.4 Exponential Integration

	3 Parameter Estimation
	3.1 Learning Procedure
	3.2 Loss Function Gradient
	3.2.1 Matrix Differentials
	3.2.2 Closed-Form Gradient Expression

	3.3 Gradient Approximation
	3.3.1 Motivation
	3.3.2 An Approximation by Benzi and Simoncini
	3.3.3 Low-Rank Approximation

	3.4 Computing the Gradient Using Automatic Differentiation

	4 Experiments
	4.1 Data Generation
	4.2 Experimental Setup
	4.3 Properties of the Gradient Approximation
	4.4 Parameter Prediction

	5 Conclusion and Further Work
	5.1 Conclusion
	5.2 Future Work

	Acknowledgements
	Appendix A. Proofs
	A.1. Proofs of Sect.3.2.2

	References

